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We present a "dynamical" approach to the study of the singularity of infinitely 
convolved Bernoulli measures vj~, for fl the golden section. We introduce vt~ as 
the transverse measure of the maximum entropy measure ,u on the repelling set 
invariant for contracting maps of the square, the "fat baker's" transformation. 
Our approach strongly relies on the Markov structure of the underlying 
dynamical system. Indeed, if fl = golden mean, the fat baker's transformation 
has a very simple Markov coding. The "ambiguity" (of order two) of this 
coding, which appears when projecting on the line, due to passages for the 
central, overlapping zone, can be expressed by means of products of matrices (of 
order two). This product has a Markov distribution inherited by the Markov 
structure of the map. The dimension of the projected measure is therefore 
associated to the growth of this product; our dimension formula appears in a 
natural way as a version of the Furstenberg-Guivarch formula. Our  technique 
provides an explicit dimension formula and, most important, provides a for- 
malism well suited for the multifractal analysis of this measure, as we will show 
in a forthcoming paper. 

KEY WORDS: Bernoulli convolutions; Hausdorff dimension; random matrices; 
Lyapunov exponent. 

1. INTRODUCTION 

1.1. The Problem 

L e t  e l ,  e ,  .... be  a s e q u e n c e  o f  i n d e p e n d e n t  r a n d o m  v a r i a b l e s  e a c h  t a k i n g  t h e  

v a l u e s  + 1  a n d  - 1  w i t h  e q u a l  p r o b a b i l i t y .  T h e  p r o b a b i l i t y  d i s t r i b u t i o n  o f  

x ' ~  e t~,, 0 < f l < l ,  d e f i n e s  a m e a s u r e  vp t h e  r a n d o m  v a r i a b l e  ( 1 - fl)  z.,,, = 0 ,, ~, , 

w h i c h  is c a l l e d  a n  i n f i n i t e l y  c o n v o l v e d  B e r n o u l l i  m e a s u r e  o r  s i m p l y  a 
B e r n o u l l i  c o n v o l u t i o n . ~ 2 4 '  ~4. ~5.20. 21. ~l 
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If for fl < 1/2, v/j has clearly a Cantor  distribution, and for fl = 1/2 the 
uniform (Lebesgue) distribution, for f l >  I/2 it is a difficult, old, and not yet 
completely solved problem to decide on the nature of vtj. It is known ~24~ 
that  vt~ is continuous and always pure, i.e., either absolutely continuous or 
totally singular, and in 1939 P. Erd6s proved the singular cont inuous 
nature of vt~ if fl-~ is a Pisot number  (i.e., an algebraic integer whose 
conjugates lie inside the unit circle). He also proved that  for a lmost  all fl 
sufficiently close to 1, vp is absolutely cont inuous/ is)  

Twenty  years later, A. Gars ia  considered the en t ropy H ~  of the 
p fin. distribution v~ of the discrete random variable (1- f l )Y~, ,=oe , ,  If 

l im?_ ~_ H~=infl,(H~/p)-G(fl) takes a value below log fl - I ,  then v/~ is 
necessarily singular and this is the case for fl ~ a Pisot number.  ~32~ 

The recent work of Alexander and Yorke ~1~ relates to dynamics this old 
ari thmetic measure problem. They consider the map  (x, y)  ~ ( - ~ ,  + Go ) x 
[ - - 1 ,  + 1 ] --* Tt~(x, j,): 

f i x +  l - f l ,  2 y -  1 if y~>0 
Tt~(x')')= f l x - ( 1 - f l ) , 2 y + l  if y < 0  

(1.1) 

For  fl = I/2 this is the classical baker 's  t ransformation,  for fl < I/2 the dis- 
sipative one. For  1/2 < f l  < 1, T,  is the "fat baker 's"  t ransformation:  the 
map  is now not inversible, the a t t ractor  is the whole square [ -  1, + 1"] x 
[ - I ,  + I ] ,  and it possesses a Sinai -Bowen-Ruel le  measure whose trans- 
verse component  is vtj. 

1.2. The Hausdor f f  and In fo rmat ion  D imens ion  of  a M e a s u r e  

Recall that the Hausdorff  dimension ( H D )  of a Borel probabil i ty 
measure/1  on a compact  metric space M is the H D  of the smallest set of 
full measure: HD([a)=inf{HD(Y), Y : / J ( Y ) =  1, Y c M } .  Young I-~6~ proved 
that if /a is a Borel probabil i ty measure on a compact  Riemannian 
manifold, and If/~ a.e. 

log p(B~(x)) 
lim = c~ ( 1 . 2 )  
~.~o - l o g e  

[B~.(x) being a z-ball centered in x ] ,  then H D ( / l ) = c c  In the dynamical  
system context (1.2) the limit existsJ 1"36'26' ~9,171 

Alexander and Yorke prove that if f l -  ~ is Pisot number,  then Io(v/~) = 
G(B)/(-logB) (the Gars ia  ent ropy invariant)  and find numerically the 
value Io(vt~) for/~ = golden mean. 

Alexander and Zagier, I'-I as we learned during the prepara t ion of this 
paper,  have now, by a completely different method,  a theoretical entropy 
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formula for f l=golden  mean which agrees with the empirical result of 
ref. I. We also learned that Bovier ~s~ has another proof of the singularity of 
v/~ in that case. 

1.3. Mot ivat ions and Method  

This paper has a double motivation. First, until now rigorous results 
in (multi)fractal analysis ["singularity f (~)  spectrum;" see, e.g., ref. 11) 
have been concerned with invariant sets which have essentially a Cantor- 
set structure. It was tempting to try to extend these ideas and techniques 
to the more realistic and complicated situations where more than one 
contracting direction is present and each interferes with the others. Second, 
the long history and multiple aspects of the problem of the nature of v/~, 
and the effort to understand the obscure, fascinating papers of Garsia, led 
us to concentrate on this example, which offers a beautiful fusion of 
arithmetic and dynamical aspects. The aim of this paper is to prepare a 
method to describe in great detail the invariant measure in view of the mul- 
tifractal analysis of the fat baker's transformation. The singularity of v B for 
/3 = golden mean is an old result. We give first an explicit (i.e., numerically 
computable) theoretical formula for the dimension of vt~ in this nice case. 

Our approach is a dynamical system approach; we introduce vii as the 
transverse measure of the maximum entropy measure/~ on the repelling set 
invariant for the contracting maps of the square Fo~=(f lx ,  y/2) and 
F?'  =(f lx  + l - f l ,  (y + 1)/2). 

By refs. 27 and 28 we know that vt~ always satisfies (2), so that all 
notions of dimension coincide. 

Our approach strongly relies on the Markov structure of the two- 
dimensional system (2.1). (This is the main difference with Garsia and all 
other works.) Indeed, if fl = golden mean, the fat baker's transformation 
has a very simple Markov coding. The "ambiguity" (of order two) of this 
coding, which appears when projecting on the line, due to passages for 
the central, overlapping zone, can be expressed by means of products of 
matrices (of order two). This product has a Markov distribution inherited 
by the Markov structure of the underlying dynamical system (2.1). The 
dimension of the projected measure is therefore associated to the growth of 
this product; our dimension formula appears in a natural way as a version 
of the Furstenberg-Guivarch formula. The result of Young (2) ensures that 
this quantity gives actually the (information) dimension of the measure. 

Observe that there are other random products of matrices which 
might naturally occur in this problem (R. Kenyon, Y. Peres, and S. Lalley, 
private communications). 

It is very likely that our method may be extended to some families of 
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Pisot numbers. However, for practical purposes, the complexity of the 
method increases with the size of the matrices. Dimension(s) of measures 
which are concentrated on attractors is of course of special interest in 
dynamics. Unfortunately, the singularity of v/~ is more a beautiful arithmetic 
hazard than a physically relevant property: most of the fat baker's trans- 
formations are absolutely continuous. This has to be related to the ~.8~ 
conjecture.lL27'28) 

2. T H E  S E T T I N G  

We consider the map (x, y)--* F(x, y): 

�9 ~x/3,23' if y~<1/2, x~<3 
r ( x 'Y~=) , x /3 - f l ,  if y>ll/Z, x>>.l-fl  

with 3 + 32= 1, with inverses 

F o ' :  [0, 1 ] x [0, 1] --* [0, fl] x [0, 1/2], F o ' ( x , y ) = ( f l x ,  y/2) 

r~- ' :  [0, 1] x [0, !] --* [1 - 3 ,  1] x [1/2, 1], 

F;t (x ,  y ) = ( f x  + 1 - 3 ,  (Y+ 1)/2) 

The invariant (repelling) set is 

x =  U - '  [0, l] ,  ki~ {0, 1} Fk,k2...k,[0, 1"] X 
i t { k l , k 2 , . . . , k t  } 

Let 

(2.1) 

A = I1 - 3 ,  3] • [1/2, 1] 

B - - E f  t , 1 Ix  [1/2, 1] 

c =  [0, 1 - 3 ]  • [0, 1/2] 

D =  [ ! - 3 , 3 ]  x [0, l/Z] 

Remark. If 3 + 3 2 = 1 ,  {A ,B ,C ,D}  is a Markov partition. The 
compatibility rules are the following: 

F ( A n X ) = C n X  

F(Bc~ X )=  A w Bw Dc~ X 
(2.2) 

F ( C n X ) = A w C w D n X  

F ( D n X ) =  Br~X 

That is, every point (x, y ) ~ X  is coded by a sequence a_(x, y)=aoa, . . .  
with ais  {A, B, C, D} such that (x, y) ~ ao, F(x, y)~ al ..... F"(x, y) ~ a ....... 
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and conversely any compatible sequence aoa~.., defines a unique point 
(x, y ) e  X. 

We describe now the invariant measure we select. Vie [0, 1] • [0, 1] 
we set 

It(F o 'I)  = �89 I t(F? ' I) = ~ It(I) (2.3) 

If we take I =  [0, 1] x [0, 1], we have 

It(A) + It(B) = �89 It(C) + It(D) = �89 (2.4) 

For I =  A, B, C, D Markov compatibility rules (2.2) give [where we 
denote CA = {(x, y) s.t. (x, y ) e C ,  F(x, y ) e A } ]  

�89 ) = It(CA ) = It( BA ) 

kit(B) = It(DB) = It(BB) 
(2.5) 

k i t (c )  = I t ( c c )  = It(AC) 

�89 It( D } = It( CD ) = It( BD ) 

[so that I t ( A C ) + p ( B D ) =  !/4, etc.] 
Observe that Markov rules (2.2) give also 

I t (AC)=I t (A) ,  I t (DB)=I t (D)  (2.6) 

Equations (2.5) and (2.6) give �89  p (A)  and k i t (B)= It(D), which, 
combined with (2.4), give also �89  and �89  and we 
conclude that I t ( B ) = i t ( C ) =  1/3, I t ( A ) = p ( D ) =  1/6. 

Observe now that, once the invariance formulas (2.3) and Markov 
compatibility rules (2.2) are stated, the measure of cylinders of bigger 
length can be computed, according to the usual rules, via the transition 
matrix P: 

p =  Z) 4'-�89 
0 �89 
1 0 

Any of the 42 N compatible finite sequences aoa ~...au of length N has 
measure I t= O(2 -u )  (see Section 4) and so this is the maximum entropy 
(log 2) Markov invariant measure ( i tP=i t ) .  

3. P R O J E C T I O N  R U L E S  

It is possible, and also easier, to understand the distribution of points 
( 1 - f l )  Z e, fl" on the line by looking at the two-dimensional system (2.1) 
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and not just to its projection. Of  course the Markov partition is not 
necessary for the understanding of the two-dimensional dynamics; it was 
introduced to set down a "dictionary" for projecting it on the line and vice 
versa. 

Consider the fl-adic expansion of x ~ [0, 1], x = 5Z/>o/3ifl ~, /3~ {0, 1}. 
If fl + f12 _- 1, the expansion of 1 is _e(1 ) -- 1100 .... so that all admissible 
fl-expansions of x e  [0, l ]  are the sequences _e(x)<e(l ), that is, all sequen- 
ces of 0 and ! without two adjacent ones. This expansion is also unique up 
to periodic expansions. ~ Wo have to distinguish three cases. 

0 < x < 1 - ft. Then _e(x) = 0 0 / 3 3 / 3 4  . . . .  SO that e_(x/fl 2) =/33/34 . . . .  

l - - f l < x < f l .  Then e_(x)=OlO/34/3s .... so that e_((x-fl'-)/fl3)= 

(a) 

(b) 
/33/34 . . . .  

(c) 

We 

f l < x <  1. Then e ( x ) =  1 0 / 3 3 / 3 4  . . . .  SO that _~((x-- fl)/fl2) =/33/34 . . . .  

c come now to the Markov coding. We write C n = { ( x , y ) s . t .  
(x, y ) e C ,  F(x, y ) e C  or D}). 

(a l )  0 < x < l - f l  and 3,<1/4.  We have a o = C  and a ~ = C  or D. 
Expand (x, y): a(x, )')=aoa~a2a3 . . . .  CC a,_a3 . . . .  Expand its projection 
x:_~(x)= 00/33/34 .... i.e., e(x/fl-') =/33/34 ... .  Also, a(F'-(x, y))  = a2a3... 
and F2(x , . )=(x / f l2 , . ) .  This means that a2a3.., projects on x/fl- '= 
/3'~fl+/3'2/~"+ .... that is, /3'~=/33, /3'~=/34 ..... etc. In conclusion, a2a3... 
projects on/33/34 ... .  

(a2) 0 < x < l - f l  and 1 / 4 < ) , < 1 / 2 .  We have a o = C  and a~=A.  
Expand (x, y) :  a_(x, y )=aoa~a,a3 . . . .  CAa2a3 .. . .  On the other hand its 
projection x has expansion _~(x)=00/33/34 .... i.e., _~(x/fl'-)=/33/34 ... .  Also, 
a_(F2(x,y))=a2a3.. ,  and F ' - ( x , . ) = ( - f l + x / f l 2 , . ) .  Markov rules force 
a , = C ,  i.e., F 2 ( x , y ) ~ C ,  so that - f l + x / / ~ 2 < / ~  -'. It follows that 
- f l+x/ f l2=/3'~f l+/si f l ' -+. . .  with/3; = 0 , / 3 : , = 0  ..... i.e., x/fl ' -=fl+/3;fl3+ .. . .  
By comparing with x/[l"- =/33 fl +/34 f12 +/35 f13 + .... we have /33 -- 1, /34 = 0, 
/35 =/3; .... etc. In conclusion, a2as.., projects on 10/35 ... .  

(bl)  1 - f l < x < f l  and 1 / 4 < 3 , < 1 / 4 + 1 / 8 .  We have a o = D ,  
al = B ,  and a2=D. Expand (x, y):_a(x, y ) = a o a l a , a 3  . . . .  DBDa3... and 
its projection X : w  4 . . . .  i.e., e_((x-flz)/f13)=/34/35 . . . .  One has 
a_(F3(x,y))=a3a4.. ,  and F 3 ( x , . ) = ( ( x - f l ' - ) / f l 3 + f l , . ) .  Markov  rules 
force a 3 = B ,  i.e., F 3 ( x , y ) e B ,  so that f l+(x - f l ' - ) / f l 3>f l .  Expand 
~+(x- f lz ) / f l3=/3 ' l f l+/3 'Ef l ' -+/3; f l3 . . .  with /3'1 -- 1, /3;_--0 ..... i.e., 
( x - fl "- )/fl3 =/3; f13 + .... and comparing with ( x - fl" )/ fl3 =/34 fl +/35 f12 + .... 
we find /34 = 0,/35 = 0 ..... etc. In conclusion a3a4.., projects on 00/36 ... .  

(b2) 1 - / ~ < x < f l  and 1 / 4 +  1 / 8 < y <  1/2. We have a o = D ,  
a l = B ,  and a,_=A or B. Expand (x, y):_a(x, y)=aoala2a3 . . . .  DB~a3...  
and its projection x:e(x)=OlO/34 .... i.e., e_((x-flz)/f13)=/34/35 . . . .  Also, 
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a_(F3(x,y})=a3a4 .... On the other hand, F3(x , . )=( (x - f l2 ) / f l 3 , . ) .  In 
conclusion a3a4.., projects on e4e5 ... .  

(b3) 1 - f l < x < f l  and 1 /2<: ,<1 /2+1/8 .  We have a 0 = A ,  a t = C  , 
and a 2 = C or  D. Expand (x, y) :  _a(x, y)  = aoala2a3 . . . .  ACCa3... 
and its projection x:_e(x)=010e4 .... i.e., e_((x-fl'-)/fl3)=e4e5 .... Also, 
_a(F3(x, y))=a3a4. . ,  and F3(x, . ) = ( ( x - f l 2 ) / f l  3, .). In conclusion a3a4... 
projects on e4e5 ... .  

(b4) 1 - f l < x < f l  and 1 / 2 + 1 / 8 < y < 1 / 4 .  We have ao=A,  a~=C, 
and az = A. Expand (x, y):c_t(x, y ) =  aoa~ a2a3 . . . .  ACAa3... and its projec- 
tion X : ~ ( X ) = 0 1 0 e  4 . . . .  i.e., ~ ( ( X - - f l 2 ) / f l 3 ) = E 4 E 5  . . . .  Also, a_(F3(x,y))= 
a3a4.., and Fa(x, - ) =  ( - f l +  ( x - f l " ) / f l  3, .). Markov rules force a3 = C, i.e., 
F 3 ( x , y ) ~ C ,  so that f l+(x-f l")/ f l3=e'l f l+e'- , f lz+e~fl3. . ,  with e ' l=0 ,  
e'_, = 0 ..... and comparing with ( x -  fl,)/fl3 = e4fl + esfl z + .... we find e4 = 1, 
e5 = 0 ..... and in conclusion a3a4.., projects on 10e6 ... .  

(cl)  f l < x < l  and l / 2 < y < l / 2 + l / 4 .  We have, a o = B  and 
a~ = D. Expand (x, y ) :  _a(x, y)  = aoa~ a-,a 3 . . . .  BDa2a3... and its projection 
x:e_(x)=lOeae4 .... i.e., e_((x-fl)/fl")=e3e4 .... We have a ( F " ( x , y ) ) =  
a-,a3.., and FZ(x, . ) = ( f l + ( x - f l ) / f l " ,  .). Markov rules force a-,=B, i.e., 
F Z ( x , y ) e B ,  which means f l+(x- f l ) / f l "=e ' l f l+e ' . , f l "+. . ,  with e ' j = l ,  
e : ,=0  ..... i.e., comparing with (x - f l ) / f l - '=e3f l+e4f l"+ .... we have e3=0 ,  
e4 = 0 ..... and we conclude that a-,a3.., projects on 00e6 ... .  

(c2) f l < x < l  and 1 / 2 + l / 4 < y < l .  We have a o = B a n d  a~=A or 
B. Expand (x, y ) :  _a(x, y ) =  aoata-,a 3 . . . .  B]aza3 .... Expand its projection 
X : _ ~ ( X ) = 1 0 e 3 / ~  4 . . . .  i.e., ~ ( ( x - - f l ) / f l 2 ) = e 3 e 4  . . . .  We have a ( F Z ( x , y ) ) =  
a,_a3.., and F"(x, . ) = ( ( x - f l ) / f l " ,  .). This means that a-,a3.., projects on 
E3E 4 . . . .  

We summarize as follows (by * we mean the second or third iterate 
of F): 

_a(x, y)  _e(x) _a(F*(x, y))  _e(F,*(x, y))  

CCoa2... OOe3... aza3.., e3~4... 

CAa2... OOe3... Ca3a4... lOes... 

DBAna3... 0 lOe4.., a3a4.., e4es... 

DBDa3... 010e4. . .  Ba4 as... 00~6...  

ACCoa3.,. 0 fOe4.., a3a4.., e4es... 

ACAa3... O lOe4... Ca4as... lOe6... 

B~a-,... IOe3... a-,a3.., e3e4... 

BDa-,... l Oe3... Ba3... Oe4... 
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We easily see from the above table that  projection rules depend on the 
splitting of the sequences. In other words, the shift does not commute  with 
the projection. We will be able nevertheless to use these rules to count how 
many and which Markov  sequences have the same given projection. 
Indeed, even if they do not commute  exactly, it is possible to set up a 
stat ionary context in which "things go as if they did." We return to this in 
Section 5. 

4. T H E  M E A S U R E  vp 

Let X(X) be the space of admissible sequences a~a2... ; s 1]) the 
space of admissible sequences e~e2--.; XN(X) and X~([0 ,  1]) the spaces of 
finite sequences of length N. We have constructed a map  qs:Z ' (X) 
X/j([0, 1 ] ) [and  its restriction qs. XN(X ) ~ X,~([O, 1 ] ) ] ,  Cb(al aza3... ) = 
~_~.~ .. . .  Let Po = {A, B, C, D}, PN= F,~N,...Po . There are 42 N rectangles 
of length N +  1 in PN (Markov  rectangles). Let BN be the parti t ion of 
[0, 1] obtained by projecting PN on [0, 1]. There are 2FN+ 3 intervals in 
BN, where F o = 0 ,  F t =  1, F,v+FN+~=FN+,_ are the Fibonacci numbers.  
They all have length of the order of/3 N + t : this is a proper ty  of the Pisot 
numbers.  

A Markov  rectangle has a measure 

with 

p(aoaj...a,v) = P(ao) P(atlao)... P(aulaN_ i )  

(1/3) 2 -U~<p(a0a l . . . au )<~  (2/3) 2 - N  (4.1) 

We define now the projected measure v/~ on [0, 1-] as the image of p 
via 4~. ~9~ 

D e f i n i t i o n  4.1.  Let aoa~...aN~XN(X ) and ~(aoal...a,v)=~e2...e,v. 
Then, Vel~2...~N~S't)'([O, 1]), 

Vt~(~ i e2.. "eN) = p(q5 - 1(~ I ~2" "eN)) (4.2) 

Let # {q~ l(~e2.. .~N) } =----Z(eIE2...eN) be the "ambigui ty"  ofaoal...aN. 
Then, since p is the max imum entropy measure (4.1), 

(1/3)2-'VZ(~te2...EN)<~Vt~(~t%...eN)<~(2/3)2 N-(g~g2...eN) (4.3) 

Finally, observe that v/~ coincides with the probabil i ty measure defined 
in refs. 1, 20, and 21. For, consider F o  j =/3x, Ft  -~ = / ~ x + l - / ~ ,  p the 
probabil i ty on the space of functions F; [0, 1 ] --+ [0, 1 ], which gives weight 
1/2 to both Fo -~ and F t  I. Now, p determines a Markov  process {X,,} in 
the following way. Choose Xo = x ~  [0, 1 ] according to a probabil i ty v; 
then 
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= ~ flX,, + l -- fl 
X,,+l (~X,, 

with probability 1/2 

with probability 1/2 

There is only one stationary probability distribution v=va for this 
Markov process, and this is the distribution of the random variable 
(1-fl)Z,,~'=ofl"e,,, where e,, are the Bernoulli variables p ( e , , = 0 ) =  
p(e,,= 1 )=  1/2. (13) 

5. THE A M B I G U I T Y  OF THE PROJECTION 

Recall that our  aim is "to count  ambiguity":  the projection rules have 
been constructed to know which are the Markov rectangles all projecting 
on the same interval of BN. We concentrate on the central, overlapping 
zone. Observe that the fl-coding of an interval I~ BN which lies in "the 
center," i.e., is contained in Eft-', fl], has the form e(I)=eoe~...eN, where 

eo=O, ej = 1, e 2 . . . . .  e,,, = O, e,,,+ I = 0 ,  e,,,+2= 1 

~nl  + 3 ~ "" ' ~--- /~n I + 2 + n2 ~ 0 , . . . ,  e n l  + 2 + n 2 + 2 + . . .nq_  I + I ~ 0 

~nl+2+n2+2+. . .nq_l+2 ~ 1, ~,nl+2+n2+2+...ttq_l+2+nq~O 
with n ~ + 2 + n 2 + 2 + . . . + n u + 2 = N ,  ni~O. We denote briefly e ( l ) =  
0 1 ,  r / l ,  0 1 ,  /12 . . . . .  0 l ,  / / q  for such an interval. There is a repeated structure 
which allows us to use the projection rules just as if there were commuta-  
tion between projecting and shift. Observe first that passages through the 
center (i.e., on 01 ) are coded by AC or DB w h e n / / +  1 is even, and by AC, 
DB, or BB when n +  1 is odd. That  is, 

{ ~ - ' ( 0 1 , / / ,  01)} = {AC.. .  AC 
DB' 

o r  

/o 

DB.. .DB 

(where .B means BB or DB and ... stands for any admissible sequence 
of n symbols), depending on the parity of n. The above BB symbol does 
not correspond to an initial passage in (01). To overcome this problem, 
we only have to consider bilateral sequences . . .a_u...ao...aN... and 
�9 . .e_N.. .eo. . .eu. . .  (see below). Now, the "ambiguity" propagates itself as 
follows. We have to count  how many sequences are produced between two 
consecutive passages through the center: in the bilateral case this depends 
only on n. It is clear that we can express how ambiguity propagates passage 
after passage by means of products of matrices of order two. Order  two is 

822/76/5-6-15 
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a simplification allowed by the symmetric  behavior  of (words beginning 
with) BB or DB. These matrices (indexed by n) simply count "how many  
(words terminating with) AC and DB are produced by (a word beginning 
with) AC in a passage for the center after the time n, and how many  AC, 
DB, [BB] are produced by DB and, which is the same, by BB.'" 

So we are led to consider binfinite sequences w . . . .  Oln_~OlnoOlnl .... 
the space I2 of these sequences, I2~ tha t  of finite right ones, and the maps  
x,,~...,q:/2 ~ I2,~ and x,,,...,,q(w) = 01n, ...nq. 

For  notat ional  convenience, we rename n~ = ri~ + 1, i.e., now n~ = 1, 2 ..... 
If  n = 2 k +  1, k = 0 ,  1, 2 ..... set 

('l *) B(k) = k + 1 

If n = 2 k + 2 ,  k = 0 ,  I, 2 ..... set 

A(k)=(11 k + l )  
k + l  (5.1b) 

We have thus the following result. 

Proposit ion 5 .1 .  The  a m b i g u i t y  

z(x,,,...,,,(og)) = z(01, n I - 1, 01,/'12 - -  1 ..... 01, r i g -  1) 

- # {4~-I(01, n l -  1, 01, n 2 -  1 ..... 01, n ~ -  1)} 

is given by 

IM(nq) M(nq_ , )...M(nl ) vl 

where  M(n)  = A(k)  i f  n = 2k + 2 and  M(n)  = B(k) i f  n = 2k + 1 and  v = (1,) 

or (~) ("depending on the parity of rio"), and 

(Vl) = v ' + v 2 v 2  

We have this formulat ion in view of taking a limit. The ambigui ty  of 
a finite string is not exactly the same, but this is irrelevant in our  context. 
Also irrelevant is the choice of the initial v. 

6. THE  M A R K O V  S T R U C T U R E  U N D E R L Y I N G  THE P R O D U C T  
OF THE M(n) 

The { ~ - l ( 0 1 ,  n -  1, 0 l )}  is a set of Markov  rectangles each beginning 
with AC, DB, or BB, terminating again with AC, DB, or BB and of length 
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n + 3. We denote each of them with the triple ( -, n - 1, -) when we do not 
specify its beginning or ending; when we do, e.g., we write (,4C, n - 1, AC); 
n -  1 indicates merely that there are n -  1 unspecified symbols projecting 
o n n - 1  zeros, n>~l.  

If n = 2k + 1, the description of {~-~(01 ,  n - 1, O1 ) } is 

[where we mean there 
(DB, 2k, AC) etc.]. 

(AC, 2k, AC) 

(AC, 2k, DB) 

(DB, 2k, AC) k strings 

(DB, 2k, DB) k strings 

(DB, 2k, BB) 

(BB, 2k, AC) k strings 

(BB, 2k, DB) k strings 

(BB, 2k, BB) 

are, e.g., k different elements ("strings") denoted 

If n = 2k + 2, the description 

(AC, 2k + 1, AC) 

(AC, 2k + 1, DB) 

(DB, 2 k +  1, AC) 

(DB, 2k + 1, DB) 

(BB, 2k + 1, AC) 

(BB, 2k + 1, DB) 

of { ~ - ' ( O l ,  n - - l , O 1 ) }  is 

k + 1 strings 

k + 1 strings 

k + 1 strings 

k + 1 strings 

Therefore {r n I - 1, 01, n 2 -  1, 01,/'13 - -  1,...} consists of  Markov  
rectangles which are built by connecting the above elementary Markov  
rectangles following the rule that we can connect two of them if and only 
if the beginning of the following one is equal to the ending of the preceding 
one. 

This means considering the Markov  system of  the space X of the 
elementary strings (. ,  n - 1 , - ) ,  Vn/> l, the Markov  measure defined by 
/l((.,  n - l , - ) )  = ( 1 / 1 2 ) 2 - " ,  and the transition matrix II(j[i) given below 
(i, j e X). We have to list separately transitions for "odd"  and " e v e n " ]  [we 
say, e.g., that i is odd if i = (-, n - 1, �9 ) with n odd] .  
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Recall that there are actually k columns occupied by strings denoted 
(DB, 2k, AC), k by (DB, 2k, DB), k by (BB, 2k, AC), and k by 
(BB, 2k, DB) for j odd and there are k + l  columns occupied by 
(DB, 2 k + I ,  AC), k + l  by (DB, 2 k + I ,  DB), k + l  by (BB, 2 k + I , A C ) ,  
and k +  1 by (BB, 2 k +  1, DB) f o r j  even. 

Here we have a very simple Markov system, very near to Bernoulli, 
because the transition probabilities H(jl i) depend only on the length o f j  
(and of course of the interdictions beginning-end). We are then led to 
study the growth of the product of matrices 

I M(x,,) M(x,,_, )... M(x, ) vl 

where v = ( l )  or (~), xi is the sequence of random variables 
{r n -  1, 01)}, n =  1, 2 ..... which are distributed according to the 
Markov stationary distribution given by p and H; M(x~)=M(n) if and 
only if x j s  { r  1, 01)}, where M ( n ) = A ( k )  if n = 2 k + 2  and B(k) 
if n = 2k + 1. 

7. T H E  L Y A P U N O V  E X P O N E N T  

7.1. E rgod ic  T h e o r e m  

Proposition 7.1 ("Ergodic Theorem"l19'23'25)). Let (X,#) be a 
(discrete) probability space, H(x, y) a Markov transition matrix such that 
p H =  V, and H"(i, j )  > 0. Let M: X--* nonnegative matrices of order two, 
such that [ log ]M(x)] dl~(x) < oo. Consider the transition kernel 

Q(x,r ) o n  X x S  ~ 

(S ~ is the circle); there is on X •  1 a measure N left invariant by 
Q : N Q = N ;  it has the form N=p(x)v , . (d4)  (see below). Consider the 
ergodic system (X N • S l, O, P~, • v.,.0), where 0: (x, 4) -* (05, M(xo) 4), 
where {Os} .=x .+  ~ is the shift on the space X N of the trajectories {x.} of 
the Markov process; P. is the measure on X N such that if x . ( 5 ) = x . ,  
P.(x,,(S) = i) = p(i) and P.(x,, + )(x) = jl  x,,(x_) = i) = 1-l(jl i). Let F($, 4) = 
log[IM(xo)r162 ]. Then 

n - -  1 l iog Im(x,)m(x,,_,)...m(xo)r 1 y, F (0%,4) )  
n 141 n , = o  

converges Pf,(x)x Vxo(d4) almost everywhere to 

2 = ~ fs, log lM(x~ �9 141 p(Xo) V..o(d4) (7.1) 
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7.2. Ergodicity 

We consider actually the ergodic system (XNx S~/4../2 ], O, Pu x vx0 ). 
The measure P~, x vx0 is /~ invariant  (see Sections 7.3 and 7.4), M are the 
matrices {A(k), B(k)}, It is the Markov  measure on the space X of the 
strings (., n - 1, �9 ) (defined in Section 6), and the circle sector n/4 <<. 0 <~ n/2 
is a closed invariant set under the action of M which contains the support  
of all v.,.. 

7.3. The Invariance Equation for  the Measure: N Q  = N 

Consider the kernel Q(x,~b,y,~)=H(x, )6MI,I~(~) andfe C~ $1). 
We have 

Therefore 

(Qf)(x, ~b) = ~ H(x, y) f(y, M(x)q~) 
Y 

N(f) = ~ fsf(X, (~) v,(d~b)It(x) 
x 

N(Qf)=~ Y'it(x) I ll(x, y) f(y,M(x)~k)Vx(dqk) 
' X S 

and the invariance equat ion N(f)= N(Qf) means that  this last expression 
is equal to ~,.Ssf(x, ~)vy(d(~)It(y), so we rewrite it as 

~f, it(x) I H(x, y) f(y, M(x)d#) v.,.(d{b) ~'#(Y)~it(y)Js 
V 

to find that  V f e  C ~  S ~) 

E It(x) Is H(x, y)f(y,  M(x)(b) vx(d(b)= Isf(y, ok) v,.(dd~) It(),) 
A" 

Hence, the invariance equat ion for v.,. reads 

p(y) v.,,(d{b)=~ It(x) II(x, y) M(x) v.,.(d{b) (7.2) 

7.4. The support  of v 

i)Vv. Let b =  {ws.t. w = 2 v ,  2 > 0 }  and veR 2. Observe that  A(k)b=( I 
The support  of v~, as we deduce from the recursive formula (7.2), is there- 
fore the closure of the orbit  of ( i)  under B(k). The vx are discrete measures 
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carried by the points ( h ~ ) ,  = 1, 2 .... and q = 0 ,  1, 2 ..... Actually, there are 
only three measures, which we call V~c, roB, and VBB, due to the special 
form of the transition matrix H(jl i). We also remark that the invariance 
equation (7.2) for vx gives by recurrence the explicit construction of the 
0-invariant measure P~, x v.,. with its existence and unicity. 

7.5. A l m o s t  Sure  Convergence  

The Ergodic Theorem 7.1 ensures convergence to 2 for almost every 
trajectory of {x, } and on a set of v.,. measure one. But since v,. is a (coun- 
table) sum of deltas weighted on points { h (h+~)}, there is convergence to 2 
a.e. {x,,} and at all points { ( / ,~)} .  We remark, however, that, repeating 
the argument of ref. 25, Chapter  III, Corollary 1.3, we can to prove the 
following stronger statement (although we will not use it): 

Proposi t ion  7.2. For  all 1.)~S[n/4, rr 

I 
- log 
n I&l 

I M(x,,) M(x. _, )... M(xo) r 

converges P , ( x )  almost everywhere to 

log Ig(x) vx( ) 

119 l,q~>O 

8. T H E  R E C U R S I V E  F O R M U L A  FOR T H E  C O M P U T A T I O N  OF 
THE L Y A P U N O V  E X P O N E N T  

The recurrence given by (7) can be started at ~ =  (il). We sometimes 
write the strings (., n -  1 , - ) e X  simply as AC, DB, or BB to mean, respec- 
tively, (AC, n -1 , . ) ,  (DB, n -1 , . ) ,  or (BB, n - I , . ) ,  n>~l,  and by i to 
mean any unspecified element of X. We have 

VAc -~(x)  ~ ~(i)II(xli) 
M l i ) = A l k )  

where the sum runs on { i :M( i )=A(k )  = { ( . , n - l , . ) V n = 2 k + 2 }  
i because A(k)O=(i ) for all 0, and VAc(SI)=I Evoa(SI)=I=vBB(SI)]. 

This is equal to 

= 1 2 . 2 " ~  (/t((AC, 2k + 1, AC)) 17(ACI (AC, 2k + 1, AC)) 
k 

+ (k + 1 )/~((DB, 2k + 1, AC)) 17(ACI (DB, 2k + 1, AC)) 

+ (k + 1 )/a((BB, 2k + 1, AC)) FI(ACI (BB, 2k + 1, AC))) 
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SO that 

Similarly 

v i Ac(1) = 11/18 

vow(,)__ 11,18 

As there are no even strings terminating by BB, we have 

Then the recurrence continues as follows: 

1. I f / 7 = q h ' ,  h'>1 1, we have 

VAc h+q p(x) Mu~=su, t~ 

where the sum runs on 

Ledrappier and Porzio 

(8 .1)  

(8.2) 

(8.3) 

(8.5) 

Similarly 

so that 

VDBII I 
oB \ h  + q )  - 2 z ' - - - - v -  + (h' - ! ) 22,------:~ 

(') (i) 
VAC 22,,. F (h' -- 1 ) 22h--'-----:~ (8.4) 

{i:~,/)--(i h,_l 
h )} 

because if h=qh', M(i) -I (,h + q ) = r  if and only if M ( i ) = B ( h ' - 1 )  and 
i = (~). This is equal to 

\ 1 / /  
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Also, 

( h )=12.2"(IJ((DB, 2(h'-I),BB)) VBB h+q 

1 () v i 
= 2 2  h, D B  

. Ifh=qh'+r,h'>_.O, l~<r<q ,  wehave 

( / ' , )  1 y. p(i)ll(xli, v i ( f )  
vAc h+q -la(X) Mli~=n~/,.~ q 

where the sum runs on 

{,-,,,=(', A,)} 
because if h=qh'+r, h'>~0, l~<r<q ,  M(i)-I( h _ j,+q)--r if and 
m ( i ) =  B(h') and q~= (~). This is equal to 

so that 

. ( ~ )  v~(;) vo.(;) v.(;) 
AC ~ --~.'/,'+2 +h' 22/.+-"""""'T+h' 22h.+--------------- T 

Similarly, 

VDB - -  2"~'+2 - I ' - h ' - -  

vo.(;) 
2 2h" + 2 

-}- h '  m 22h'+2 

(8.6) 

only if 

(8.7) 

(8 .8)  
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and 

V BB 

(,,+q) = Vo. (;)__ . ,,.. (;)__ 
22h' + 2 22h '  + 2 

We can now write the explicit formula for the exponent:  

(8.9) 

1 [ IA(k)O[(1 
2 = g  Z E log 101 ~vAc(O) 

k>~O b=(hh+q) 
h>~l,q~>O 

+ (k + 1) rvoa(O) + van(O)] + log 10~- - -  

(, , )] x 22-SVZ-i+~VAc(O)+(2k+l)z.zzk+----------i[vos(O)+vss(O)] (8.10) 

where the measures VAc, vns, and vaa are given in (8.1)-(8.9). 

9. THE D I M E N S I O N  OF vp 

We know that  (1 /q) log  IM(x,,)M(xq_l)...M(xl)v[ ~ .  for P ,  a.e. 
trajectory of the Markov  process {xq}. Similarly, the law of the large 
numbers  ensures that 1~2) 

g(x~)+'" + g(Xq)~ E~,(g(x~)) if E,g < oo 
q 

P~, a.e. trajectory of the Markov  process {xq}. Take g ( x A = l o g 2  ' '+~ to 
have 

1 
- l o g  2"'  + l . . .  + ,,, + t _..  E~,(n + 1 ) l o g  2 
q 

log2  (2k + 3) 2 (2k + 2) 2 

= 6 ~ 2 zk+--------~+ 2 zk+l k~>O 

log 2 (n + 1 )2 
= 6 ~ 2,------------;-- = E log 2 

n>~ I 

Similarly 

1 
- log fl"' + I'" +" '+ t -+ E log fl P ,  a.e. 
q 
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We have indeed proven convergence P~ a.e., but now we would like to 
say something about  convergence P,.# a.e., where ~ = v/~. Let 

Sq(fl)(~.))=M(r qb(x) : _r/ 

Sq(n_ ) = M(nq)... M(n ~ ) 

We know that (1/q) log lSq(Cb(5))vl--*2 P~, a.e., i.e., there exists a set 
A of P~, measure 0 such that if s e A ,  then (1/q) log ISq(q~(.S)) vl --*2. But 
any P~ null set A has the form �9 IB, because we know that Sq(x_)= 
M(xq ) . . .M(x l )=M(nq) . . .M(n l )  if and only if 

x.,.,.,.2....,.q(~) = Xl x2.. .xq ~ { ~ - t ( 0 1 n t -  101n2-  1 . . . 01n~-  1)} 

As B has P,.~ measure 0 if and only if A = q S - ~ B  has P ,  measure 0, 
it follows that (1/q)loglSq(n_)vl--*2 for n C B  if and only if 
(l /q) log ISq(qS(x)) v[ --* 2 for x C A .  (9) 

We can conclude that 

1 
- l o g  Iaq(n) vl ~ 9. P,.~ a.e. 
q 

g(n l )+ . . .  + g(nq) 
~ E l o g 2  P,.i,a.e. for 

q 

f ( n l ) + . . . + f ( n q )  , E l o g  fl P,.~a.e. for 
q 

g(ni) = log 2 "~+ 1 

f(ni) ---- log fl"'+ ' 

and therefore 
2 - E l o g  2 

dim(va) - E l o g f l  

where 2 is given in (8.10). 
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